Annual Drinking Water Quality Report

PIKE-GIBSON WATER, INC.

Public Water System ID: IN5263003

We are pleased to present to you the Annual Water Quality Report (Consumer Confidence Report) for the year, for the period of January 1 to December 31, safe drinking water. (Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien). 2024. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide

For more information regarding this report, contact:

Name: Kevin Stilwell – Superintendent for Pike Gibson Water, Inc.

Phone: 812-749-4916

Website information: https://pgw.myruralwater.com

Monday of April @ 7:30 pm cst. These meetings are held at the PGW office located at 325 N Jackson St – Oakland City IN 47660. Pike Gibson Water, Inc. holds monthly meetings every fourth (4) Monday of each month @ 6:30 pm cst. PGW's annual meeting is held on the fourth (4)

Sources of Drinking Water

PIKE-GIBSON WATER, INC. is Purchased surface water.

Our water source(s) and source water assessment information are listed below:

Source Name	Type of Water	Report Status	Location
ELBERFELD - INS287003	Surface water		
PATOKA LAKE REGIONAL- INS219012	Surface water		
PETERSBURG-IN5263002	Ground water		

resulting from the presence of animals or from human activity. the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over

obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of

people, infants (both formula-fed and breastfed), and young children. Some of the health effects to infants and children include decreases in IQ and There is no safe level of lead in drinking water. Exposure to lead in drinking water can cause serious health effects in all age groups, especially pregnant attention span. Lead exposure can also result in new or worsened learning and behavior problems. The children of persons who are exposed to lead before

nervous system problems. Contact your health care provider for more information about your risks. or during pregnancy may be at increased risk of these harmful health effects. Adults have increased risks of heart disease, high blood pressure, kidney or

oil and gas production, mining, or farming. Microbial Contaminants - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife Inorganic Contaminants - such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges,

Pesticides and Herbicides - which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses

come from gas stations, urban stormwater runoff, and septic systems. Organic Chemical Contaminants - including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also

Radioactive Contaminants – which can be naturally-occurring or be the result of oil and gas production and mining activities

water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public

Some people may be more vulnerable to contaminants in drinking water than the general population

concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health

microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with

or during pregnancy may be at increased risk of these harmful health effects. Adults have increased risks of heart disease, high blood pressure, kidney or attention span. Lead exposure can also result in new or worsened learning and behavior problems. The children of persons who are exposed to lead before people, infants (both formula-fed and breastfed), and young children. Some of the health effects to infants and children include decreases in IQ and nervous system problems. Contact your health care provider for more information about your risks. There is no safe level of lead in drinking water. Exposure to lead in drinking water can cause serious health effects in all age groups, especially pregnant

In the tables below, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we've provided the following definitions:

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety found in our water system. evel 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been

has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation

available treatment technology. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best

margin of safety. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a

reflect the benefits of the use of disinfectants to control microbial contaminants. Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants

Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. Treatment Technique or ∏: A required process intended to reduce the level of a contaminant in drinking water.

Avg: Average - Regulatory compliance with some MCLs are based on running annual average of monthly samples.

RAA: Running Annual Average.

<u>LRAA:</u> Locational Running Annual Average. <u>mrem</u>: millirems per year (a measure of radiation absorbed by the body).

ppm: milligrams per liter (mg/L) or parts per million - or one ounce in 7,350 gallons of water. ppb: micrograms per liter (ug/L) or parts per billion - or one ounce in 7,350,000 gallons of water.

picocuries per liter (pCi/L): picocuries per liter is a measure of the radioactivity in water.

na: not applicable.

microbiological samples collected, the water system collects disinfectant residuals to ensure control of microbial growth. Our water system tested a minimum of 10 sample(s) per month in accordance with the Total Coliform Rule for microbiological contaminants. With the

Disinfectant	Date	Highest RAA	Unit	Range	MRDL	MRDLG	MRDL MRDLG Typical Source
CHLORINE	2024	1	ppm	0.6 - 1.1	4	4	Water additive used to control microbes

Regulated Contaminants

annual basis; therefore, information provided in this table refers back to the latest year of chemical sampling results. In the tables below, we have shown the regulated contaminants that were detected. Chemical Sampling of our drinking water may not be required on an

Unregulated Contaminant Monitoring Rule (UCMR)	gulated Contaminant Monitoring		Collection Date of HV		Highes	Highest Value (HV)	3	Range of Sampled Unit Result(s)
Lead and Copper	Period	90TH Percentile: 90% Range of Sampled of your water utility Results levels were less than (low - high)	Range of Sampled Results (low - high)	Unit	AL	Sites Over AL	Typical Source	
COPPER, FREE	2021 - 2022 0.203	0.203	0.0093 - 0.4286	ppm 1.3	1.3	0	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives	ing systems; Erosion of nwood preservatives
LEAD	2021 - 2022 2.6	2.6	0-4.5	ppb 15	15	0	Corrosion of household plumbing systems; Erosion of natural deposits	ing systems; Erosion of

							ELBERFELD)	
				79.6			(10922 S SR 57,	
By-product of drinking water chlorination	0	80	ppb	28.6 -	57.2	2023 - 2024	FRUDENBERG	TTHM
				80.5			SOMERVILLE)	
By-product of drinking water chlorination	0	80	opdo	18.9 -	56.4	2023 - 2024	D WILLIS (5132	MHTE
		_					ELBERFELD)	
				81.7			(10922 S SR 57,	(HAA5)
By-product of drinking water disinfection	0	60	ppb	17.2 -	45.5	2023 - 2024	FRUDENBERG	TOTAL HALOACETIC ACIDS
							SOMERVILLE)	
				51.4			S LINCOLN ST,	(HAA5)
By-product of drinking water disinfection	0	60	dqq	17.5 -	41.8	2023 - 2024	D WILLIS (5132	TOTAL HALOACETIC ACIDS
					LRAA			
MCL MCLG Typical Source	MCLG	MCL	Unit	Range	Highest	Period	Sample Point Period	Disinfection Byproducts

		Regulated Contaminants
		Collection Date Highest
	Value	Highest
		Range
ľ		Unit
		MC
		MCLG .
		Typical Source

Violations

During the period covered by this report we had the below noted violations.

state. Transmittal has been completed.		REVISIONS	11/14/2024
Transmitting complications of inventory information to	SI REPORTING-INITIA	I FAD AND COPPER BUILE	10/16/2024 -
state. Transmittal has been completed.		REVISIONS	11/14/2024
Transmitting complications of inventory information to	LSL INVENTORY-INITIAL	LEAD AND COPPER RULE	10/16/2024 -
Violation Explanation	Violation Type	Analyte	Violation Period

Pike Gibson Water direct link to the Public Transparency Dashboard for the Lead & Copper inventory please go to https://pwsptd.120wateraudit.com/Pike-GibsonWater-IN for all other counties please log into https://idem.120water-ptd.com

Additional Required Health Effects Language:

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, Some people who drink water containing Haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer. kidneys, or central nervous systems, and may have an increased risk of getting cancer.

There are no additional required health effects violation notices.

Reseller Contaminants

which promotes strong teeth; Discharge from fertilizer and aluminum factories	4	4	ppm	0.394	0.394	COMPANY	8/2//2023	FLOORIDE
which promotes strong teeth; Discharge from fertilizer and aluminum factories		,				REGIONAL WATER		
Erosion of natural deposits; Water additive	4	4	ppm	0.57	0.57	PATOKA LAKE	8/6/2024	FLUORIDE
Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	2	2	mdd	0.056	0.056	PETERSBURG WATER	8/27/2023	BARIUM
Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	2	2	ppm	0.024	0.024	PATOKA LAKE REGIONAL WATER	8/6/2024	BARIUM
Runoff from herbicide used on row crops	3	3	ppb	0 - 0.2	0.2	EVANSVILLE WATER UTILITY	8/5/2024	ATRAZINE
Runoff from herbicide used on row crops	3	3	ppb	0-0.21	0.21	PATOKA LAKE REGIONAL WATER	8/5/2024	ATRAZINE
Runoff from herbicide used on row crops	70	70	ppb	0-0.3	0.3	EVANSVILLE WATER UTILITY	8/5/2024	2,4-D
				Result(s) (low - high)	Result			
Typical Source	MCLG	MCL	Unit	Range of Sampled	Highest Sample	Water System	Collection Date	Regulated Contaminants

By-product of drinking water disinfection	0	60	ppb	20.3 - 44.8	31	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	21.2 - 50.8	33	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	4.77	5	PETERSBURG WATER COMPANY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	18.6 - 61	38	PATOKA LAKE REGIONAL WATER	2023 - 2024	TOTAL HALOACETIC ACIDS (HAA5)
By-product of drinking water disinfection	0	60	ppb	19.6 - 57.8	39	PATOKA LAKE REGIONAL WATER	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	25.1 - 47.1	35	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	22.2 - 46.8	36	PATOKA LAKE REGIONAL WATER	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	25.2 - 56.2	38	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAA5)
By-product of drinking water disinfection	0	60	ppb	24.8 - 64.3	40	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	20.7 - 47.4	35	PATOKA LAKE REGIONAL WATER	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	22.7 - 51	35	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	ppb	22.7 - 51.2	35	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAA5)
By-product of drinking water disinfection	0	60	ppb	25 - 54.4	37	EVANSVILLE WATER UTILITY	2023 - 2024	TOTAL HALOACETIC ACIDS (HAA5)
By-product of drinking water disinfection	0	60	ppb	33.6 - 82.2	50.9	ELBERFELD WATER DEPARTMENT	2023 - 2024	TOTAL HALOACETIC ACIDS (HAAS)
By-product of drinking water disinfection	0	60	qdd	45.3 - 75.1	56.3	ELBERFELD WATER DEPARTMENT	2023 - 2024	TOTAL HALOACETIC ACIDS (HAA5)
Typical Source	MCLG	MCL	Unit	Range of Sampled Result(s) (low - high)	Highest LRAA	Water System	Monitoring Period	Disinfection Byproducts
tanks, sewage; Erosion of natural deposits			7			טדונודץ	10200	NI ROLL THE ROLL TO
Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	10	10	ppm	0.87	0.87	UTILITY OTION OF THE WATER	1/8/2024	NITRATE
Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	4	4	ppm	0.66	0.66	EVANSVILLE WATER UTILITY	1/8/2024	FLUORIDE

MHIL	MHTT	MHIL	MHTT	MHTT	WHIL	WHIL	MHTT	MHTT	TTHM	WHTT	MHTT	MHIL	WHIL	MHTT
						· ·								
2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024	2023 - 2024
EVANSVILLE WATER UTILITY	EVANSVILLE WATER	PETERSBURG WATER COMPANY	PATOKA LAKE REGIONAL WATER	PATOKA LAKE REGIONAL WATER	EVANSVILLE WATER UTILITY	PATOKA LAKE REGIONAL WATER	EVANSVILLE WATER UTILITY	EVANSVILLE WATER UTILITY	PATOKA LAKE REGIONAL WATER	EVANSVILLE WATER UTILITY	EVANSVILLE WATER UTILITY	EVANSVILLE WATER UTILITY	ELBERFELD WATER DEPARTMENT	ELBERFELD WATER DEPARTMENT
47	42	8	38	42	48	39	40	49	39	47	45	50	50.1	47.9
26.3 - 61.4	24.9 - 53.2	7.59	16.7 - 59.3	20.6 - 68.8	29.2 - 61	17.9 - 65.8	24.6 - 52.9	30.2 - 61.5	19.4 - 61.3	27.1 - 62.6	26.4 - 57.4	30 - 71.7	27.1 - 77.6	25.4 - 63.3
ppb	ррь	ppb	ppb											
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
By-product of drinking water chlorination														

Additional Required Health Effects Language from Purchases:

Some people who drink water containing Haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Reseller Violations and Health Effects Information

There are no additional required health effects violation notices from Purchases.